Add like
Add dislike
Add to saved papers

Characterization of the composition, structure, and functional potential of bamboo rhizosphere archaeal communities along a chromium gradient.

INTRODUCTION: Bamboo can be used in the phytoremediation of heavy metal pollution. However, the characteristics of the bamboo rhizosphere archaeal community in Cr-contaminated soil under field conditions remain unclear.

METHODS: In this study, high-throughput sequencing was used to examine the rhizosphere soil archaeal communities of Lei bamboo ( Phyllostachys precox ) plantations along a Cr pollution gradient.

RESULTS: The results revealed U-shaped relationships between Cr [total Cr (TCr) or HCl-extractable Cr (ACr)] and two alpha indices (Chao1 and Shannon) of archaea. We also established that high Cr concentrations were associated with a significant increase in the abundance of Thaumarchaeota and significant reductions in the abundances of Crenarchaeota and Euryarchaeota. The archaeal co-occurrence networks reduced in complexity with Cr pollution, decreasing the community's resistance to environmental disturbance. Candidatus nitrosotalea and Nitrososphaeraceae_unclassified (two genera of Thaumarchaeota) were identified as keystone taxa. The community structure of soil archaeal communities was also found to be affected by TCr, ACr, pH, total organic C, and available nutrient (N, P, and K) concentrations, with pH being identified as the most reliable predictor of the archaeal community in assessed soils.

DISCUSSION: These findings enhance our understanding of microbial responses to Cr pollution and provide a basis for developing more refined approaches for the use of bamboo in the remediation of Cr-contaminated soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app