Add like
Add dislike
Add to saved papers

Accurately Controlled Tumor Temperature with Silica-Coated Gold Nanorods for Optimal Immune Checkpoint Blockade Therapy.

Photothermal therapy (PTT) at mild temperatures ranging from 44 to 45 °C holds tremendous promise as a strategy for inducing potent immunogenic cell death (ICD) within tumor tissues, which can reverse the immunosuppressive tumor microenvironment (ITM) into an immune-responsive milieu. However, accurately and precisely controlling the tumor temperature remains a formidable challenge. Here, we report the precision photothermal immunotherapy by using silica-coated gold nanorods (AuNR@SiO2 ), and investigating the optimal administration routes and treatment protocols, which enabled to achieve the sustained and controlled mild heating within the tumor tissues. First, the highest photothermal performance of AuNR@SiO2 with 20-nm silica shell thickness than 5 or 40 nm was confirmed in vitro and in vivo. Then, the optimal conditions for precision immunotherapy were further investigated to produce mild temperature (44 to 45 °C) accurately in tumor tissues. The optimal conditions with AuNR@SiO2 result in a distinct cell death with high early/late apoptosis and low necrosis, leading to very efficient ICD compared to lower or higher temperatures. In colon tumor-bearing mice, intratumorally injected AuNR@SiO2 efficiently promotes a mild temperature within the tumor tissues by local irradiation of near-infrared (NIR) laser. This mild PTT substantially increases the population of mature dendritic cells (DCs) and cytotoxic T cells (CTLs) within tumor tissues, ultimately reversing the ITM into an immune-responsive milieu. Furthermore, we found that the combination mild PTT with AuNR@SiO2 and anti-PD-L1 therapy could lead to the 100% complete regression of primary tumors and immunological memory to prevent tumor recurrence. Collectively, this study demonstrates that AuNR@SiO2 with a robust methodology capable of continuously inducing mild temperature accurately within the ITM holds promise as an approach to achieve the precision photothermal immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app