Read by QxMD icon Read

Biomaterials Research

Myrna Nurlatifah Zakaria, Arief Cahyanto, Ahmed El-Ghannam
Background: Carbonate apatite (CO3 Ap) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, CO3 Ap induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of CO3 Ap cement combined with SCPC, later term as CO3 Ap-SCPC cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value)...
2018: Biomaterials Research
Chang Yong Hu, Taek-Rim Yoon
Background: Total hip arthroplasty (THA) is probably one of the most successful surgical interventions performed in medicine. Through the revolution of hip arthroplasty by principles of low friction arthroplasty was introduced by Sir John Charnley in 1960s. Thereafter, new bearing materials, fixation methods, and new designs has been improved. The main concern regarding failure of THA has been the biological response to particulate polyethylene debris generated by conventional metal on polyethylene bearing surfaces leading to osteolysis and aseptic loosening of the prosthesis...
2018: Biomaterials Research
Han Chang Kang
Background: Interest in subcellular organelle-targeting theranostics is substantially increasing due to the significance of subcellular organelle-targeting drug delivery for maximizing therapeutic effects and minimizing side effects, as well as the significance of theranostics for delivering therapeutics at the correct locations and doses for diseases throughout diagnosis. Among organelles, mitochondria have received substantial attention due to their significant controlling functions in cells...
2018: Biomaterials Research
Hatice O Ozguldez, Junghwa Cha, Yoonmi Hong, Ilkyoo Koh, Pilnam Kim
Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear...
2018: Biomaterials Research
Yong Cheol Shin, Su-Jin Song, Yu Bin Lee, Moon Sung Kang, Hyun Uk Lee, Jin-Woo Oh, Dong-Wook Han
Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials...
2018: Biomaterials Research
Ik Sung Cho, Hye Min Oh, Myeong Ok Cho, Bo Seul Jang, Jung-Kyo Cho, Kyoung Hwan Park, Sun-Woong Kang, Kang Moo Huh
Background: Mucoadhesive polymers, which may increase the contact time between the polymer and the tissue, have been widely investigated for pharmaceutical formulations. In this study, we developed a new polysaccharide-based mucoadhesive polymer with thermogelling properties. Methods: Hexanoyl glycol chitosan (HGC), a new thermogelling polymer, was synthesized by the chemical modification of glycol chitosan using hexanoic anhydride. The HGC was further modified to include thiol groups to improve the mucoadhesive property of thermogelling HGC...
2018: Biomaterials Research
Sohyeon Park, Uiyoung Han, Daheui Choi, Jinkee Hong
Background: The main purpose of drug delivery systems is to deliver the drugs at the appropriate concentration to the precise target site. Recently, the application of a thin film in the field of drug delivery has gained increasing interest because of its ability to safely load drugs and to release the drug in a controlled manner, which improves drug efficacy. Drug loading by the thin film can be done in various ways, depending on type of the drug, the area of exposure, and the purpose of drug delivery...
2018: Biomaterials Research
Hyun Cheol Bae, Hee Jung Park, Sun Young Wang, Ha Ru Yang, Myung Chul Lee, Hyuk-Soo Han
Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized...
2018: Biomaterials Research
Jin Hyun Lee
Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded...
2018: Biomaterials Research
Ibrahim Fatih Cengiz, Joaquim Miguel Oliveira, Rui L Reis
Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need...
2018: Biomaterials Research
Rengarajan Baskaran, Junghan Lee, Su-Geun Yang
Background: Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction: In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues...
2018: Biomaterials Research
Wooram Park, Young-Jae Heo, Dong Keun Han
Background: Recently, cancer immunotherapy has become standard for cancer treatment. Immunotherapy not only treats primary tumors, but also prevents metastasis and recurrence, representing a major advantage over conventional cancer treatments. However, existing cancer immunotherapies have limited clinical benefits because cancer antigens are often not effectively delivered to immune cells. Furthermore, unlike lymphoma, solid tumors evade anti-cancer immunity by forming an immune-suppressive tumor microenvironment (TME)...
2018: Biomaterials Research
Khwaja Salahuddin Siddiqi, M Rashid, A Rahman, Tajuddin, Azamal Husen, Sumbul Rehman
Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses...
2018: Biomaterials Research
Saji Uthaman, Kang Moo Huh, In-Kyu Park
Background: Cancer is one of the deadliest threats to human health. Abnormal physiochemical conditions and dysregulated biosynthetic intermediates in the tumor microenvironment (TME) play a significant role in modulating cancer cells to evade or defend conventional anti-cancer therapy such as surgery, chemotherapy and radiotherapy. One of the most important challenges in the development of anti-tumor therapy is the successful delivery of therapeutic and imaging agents specifically to solid tumors...
2018: Biomaterials Research
Jung Min Shin, Seok Ho Song, N Vijayakameswara Rao, Eun Sook Lee, Hyewon Ko, Jae Hyung Park
Background: Antigen-specific cytotoxic T lymphocytes (CTLs), which eliminate target cells bearing antigenic peptides presented by surface major histocompatibility complex (MHC) class I molecules, play a key role in cancer immunotherapy. However, the majority of tumors are not immunologically rejected since they express self-antigens which are not recognized by CTLs as foreign. To foreignize these tumors for CTL-mediated immunological rejection, it is essential to develop carriers that can effectively deliver foreign antigens to cancer cells...
2018: Biomaterials Research
Yohan Jeong, Hee Sook Hwang, Kun Na
Background: Magnetic resonance imaging is one of the diagnostic tools that uses magnetic particles as contrast agents. It is noninvasive methodology which provides excellent spatial resolution. Although magnetic resonance imaging offers great temporal and spatial resolution and rapid in vivo images acquisition, it is less sensitive than other methodologies for small tissue lesions, molecular activity or cellular activities. Thus, there is a desire to develop contrast agents with higher efficiency...
2018: Biomaterials Research
Seungbin Cha, Sun Hwa Lee, Sung Hun Kang, Mohammad Nazmul Hasan, Young Jun Kim, Sungpil Cho, Yong-Kyu Lee
Background: Diabetes mellitus (DM) is a chronic progressive metabolic disease that involves uncontrolled elevation of blood glucose levels. Among various therapeutic approaches, GLP-1 prevents type 2 diabetes mellitus (T2DM) patients from experiencing hyperglycemic episodes. However, the short half-life (< 5 min) and rapid clearance of GLP-1 often limits its therapeutic use. Here, we developed an oral GLP-1 gene delivery system to achieve an extended antidiabetic effect. Methods: Human IgG1 (hIgG1)-Fc-Arg/pDNA complexes were prepared by an electrostatic complexation of the expression plasmid with various ratios of the positively modified Fc fragments of an antibody (hIgG1-Fc-Arg) having a targeting ability to FcRn receptor...
2018: Biomaterials Research
Byeong Jo Ha, Sangsoo Park
Background: Gallstones have conventionally been classified by gross inspection into 4 categories: cholesterol gallstones, black pigment (calcium bilirubinate) gallstones, brown gallstones, and mixed gallstones that contain both cholesterol and calcium bilirubinate. Classification using Fourier-transform infrared (FT-IR) spectroscopy supplements gross inspection; however, the issue of ambiguity in gallstone classification has not been fully addressed to date. Methods: Twenty-six gallstones obtained after surgical gallbladder removal were examined using FT-IR spectroscopy and digital photography, and classified into 6 gallstone groups according to characteristic FT-IR absorption bands...
2018: Biomaterials Research
Yohan Jeong, Kun Na
Background: Gadolinium-based contrast agents are widely used as a contrast agent for magnetic resonance imaging. Since gadolinium ions are toxic, many chelators are developed to bind gadolinium ions to prevent free gadolinium-associated disease. However, many reports indicated that linear chelator-based contrast agents are associated with nephrogenic systemic fibrosis (NSF) in patients with low kidney function. Therefore, the demand for stable macrocyclic chelator-based contrast agent is now increasing...
2018: Biomaterials Research
Guk Young Ahn, Tae-Kyung Ryu, Yu Ri Choi, Ju Ri Park, Min Jeong Lee, Sung-Wook Choi
Background: Electrospun fibrous matrices are of great importance for tissue engineering and drug delivery device. However, relatively low mechanical strength of the fibrous matrix is one of the major disadvantages. NDs with a positive charge were selected to enhance the mechanical property of a composited fibrous matrix by inducing the intermolecular interaction between NDs and polymer chain. We prepared ND-composited poly (ε-caprolactone) (PCL) fibrous matrices by electrospinning and evaluated their performance in terms of mechanical strength and cell behaviors...
2018: Biomaterials Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"