Add like
Add dislike
Add to saved papers

Integrating mathematical approaches (IMAS): Novel methodology for predicting dermal absorption rates of chemicals under finite dose conditions.

Quantitative structure permeation relationship (QSPR) models have gained prominence in recent years owing to their capacity to elucidate the influence of physicochemical properties on the dermal absorption of chemicals. These models facilitate the prediction of permeation coefficient (Kp) values, indicating the skin permeability of a chemical under infinite dose conditions. Conversely, obtaining dermal absorption rates (DAs) under finite dose conditions, which are crucial for skin product safety evaluation, remains a challenge when relying solely on Kp predictions from QSPR models. One proposed resolution involves using Kroes' methodology, categorizing DAs based on Kp values; however, refinement becomes necessary owing to discreteness in the obtained values. We previously developed a mathematical model using Kp values obtained from in vitro dermal absorption tests to predict DAs. The present study introduces a new methodology, Integrating Mathematical Approaches (IMAS), which combines QSPR models and our mathematical model to predict DAs for risk assessments without conducting in vitro dermal absorption tests. Regarding 40 chemicals (76.1 ≤ MW ≤ 220; -1.4 ≤ Log Ko/w ≤ 3.1), IMAS showed that 65.0% (26/40) predictions of DA values were accurate to within twofold of the observed values in finite dose experiments. Compared to Kroes' methodology, IMAS notably mitigated overestimation, particularly for hydrophilic chemicals with water solubility exceeding 57.0 mg/cm3 . These findings highlight the value of IMAS as a tool for skin product risk assessments, particularly for hydrophilic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app