Add like
Add dislike
Add to saved papers

A cellular tilting mechanism important for dynamic tissue shape changes and cell differentiation in Drosophila.

Developmental Cell 2024 April 30
Dynamic changes in three-dimensional cell shape are important for tissue form and function. In the developing Drosophila eye, photoreceptor differentiation requires the progression across the tissue of an epithelial fold known as the morphogenetic furrow. Morphogenetic furrow progression involves apical cell constriction and movement of apical cell edges. Here, we show that cells progressing through the morphogenetic furrow move their basal edges in opposite direction to their apical edges, resulting in a cellular tilting movement. We further demonstrate that cells generate, at their basal side, oriented, force-generating protrusions. Knockdown of the protein kinase Src42A or photoactivation of a dominant-negative form of the small GTPase Rac1 reduces protrusion formation. Impaired protrusion formation stalls basal cell movement and slows down morphogenetic furrow progression and photoreceptor differentiation. This work identifies a cellular tilting mechanism important for the generation of dynamic tissue shape changes and cell differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app