Add like
Add dislike
Add to saved papers

Biophysics-inspired spike rate adaptation for computationally efficient phenomenological nerve modeling.

Hearing Research 2024 April 25
This study introduces and evaluates the PHAST+ model, part of a computational framework designed to simulate the behavior of auditory nerve fibers in response to the electrical stimulation from a cochlear implant. PHAST+ incorporates a highly efficient method for calculating accommodation and adaptation, making it particularly suited for simulations over extended stimulus durations. The proposed method uses a leaky integrator inspired by classic biophysical nerve models. Through evaluation against single-fiber animal data, our findings demonstrate the model's effectiveness across various stimuli, including short pulse trains with variable amplitudes and rates. Notably, the PHAST+ model performs better than its predecessor, PHAST (a phenomenological model by van Gendt et al.), particularly in simulations of prolonged neural responses. While PHAST+ is optimized primarily on spike rate decay, it shows good behavior on several other neural measures, such as vector strength and degree of adaptation. The future implications of this research are promising. PHAST+ drastically reduces the computational burden to allow the real-time simulation of neural behavior over extended periods, opening the door to future simulations of psychophysical experiments and multi-electrode stimuli for evaluating novel speech-coding strategies for cochlear implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app