Add like
Add dislike
Add to saved papers

Not just for lymphoid cells: The role of the noncanonical NF-κB signaling pathway in early and late myelopoiesis with a focus on hypereosinophilic disorders.

The noncanonical NF-κB pathway is involved in lymphoid organ development, B cell maturation, and cytokine production. However, new research has demonstrated that this pathway is also key for the orderly and sequential maturation of myeloid cells, including neutrophils and eosinophils. When this pathway is disrupted or constitutively activated, aberrations in hematopoietic stem and progenitor cell (HSPC) survival and proliferation, as well as subsequent granulopoiesis and eosinophilopoiesis are affected. Disturbance of such a coordinated and delicate process can manifest in devastating clinical disease including acute and chronic myeloid leukemias (AML and CML, respectively), pre-leukemic processes such as myelodysplastic syndrome (MDS) or hyperinflammatory conditions like Hypereosinophilic Syndrome (HES). In this review, we will discuss the molecular machinery within the noncanonical NF-κB pathway, crosstalk with the canonical NF-κB pathway, murine models of noncanonical signaling, as well as how aberrations in this pathway manifest in leukemic or hyperinflammatory disease with a focus on HES. Potential and promising drug therapies will also be discussed, emphasizing the noncanonical NF-κB pathway as a potential target for improved treatment for patients suffering from leukemia or idiopathic HES. The hope is that review of such mechanisms and treatments may eventually result in findings that aid physicians in rapidly diagnosing and more accurately classifying patients suffering from such complex and overlapping hematopoietic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app