Add like
Add dislike
Add to saved papers

Utilizing response surface methodology for the microstructural examination of CeO 2 /GNP composite coating applied via air plasma spraying and post-treated with spark plasma sintering.

Heliyon 2024 April 31
CeO2 /GNP coatings were fabricated using a three-step process: high-energy ball milling, spray-drying, and air plasma spray (APS) deposition. Spark plasma sintering (SPS) was employed for post-treatment to densify the coatings. Response surface methodology (RSM) was employed to optimize SPS processing parameters, including temperature, pressure, and holding time, for minimizing porosity. A quadratic model was developed and validated using analysis of variance (ANOVA) to determine the influence of the independent variables. A regression equation was derived to predict porosity based on the process parameters. Scanning elctron microscopy(SEM) measurements revealed a significant 16 % porosity reduction in the densified coating. Interlamellar cracks and microcracks were significantly reduced, improving coating integrity and interface bonding. Enhancement of SPS parameters indicated that higher temperature and pressure combined with shorter holding times yielded minimal porosity. The study demonstrated that higher pressures exhibited a stronger impact on porosity at higher temperatures, while the effect of temperature was more pronounced at a holding time of 4 min. The interaction between pressure and holding time highlighted the importance of considering both parameters for effective porosity control in SPS. The constraints for each parameter have been defined through the optimization process. The set temperature is 950 °C, the pressure is established at 30 MPA, and the duration of the holding time is 4 min.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app