Add like
Add dislike
Add to saved papers

Nano-Sized Al 2 O 3 -Gr Reinforced Al7075 Hybrid Composite: Impact of Cooling Agents on Mechanical, Wear, and Fracture Behavior.

ACS Omega 2024 April 24
Aluminum metal cast composites (AMCCs) are frequently used in high-tech sectors such as automobiles, aerospace, biomedical, electronics, and others to fabricate precise and especially responsible parts. The mechanical and wear behavior of the metal matrix composites (MMCs) is anticipated to be influenced by the cooling agent's action and the cooling temperature. This research paper presents the findings of a series of tests to investigate the mechanical, wear, and fracture behavior of hybrid MMCs made of Al7075 reinforced by varying wt % of nano-sized Al2 O3 and Gr and quenched with water and ice cubes. The heat-treated Al7075 alloy hybrid composites were evaluated for their hardness, tensile, and wear behavior, showcasing a significant process innovation. The heat treatment process greatly improved the hybrid composites' mechanical and wear performance. The samples quenched in ice attained the highest hardness of 119 VHN. There is a 45.37% improvement in the hardness of base alloy with the addition of 3% of Al2 O3 and 1% of graphite particles. Further, the highest tensile and compression strengths were found in the ice-quenched 3% Al2 O3 and 1% graphite hybrid composites with improvements of 34.2 and 48.83%, respectively, compared to the water-quenched base alloy. Under the samples quenched in ice, the mechanical and wear behavior improved. The tensile fractured surface showed voids, particle pullouts, and dimples. The worn-out surface of wear test samples of the created hybrid composite had micro pits, delamination layers, and microcracks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app