Add like
Add dislike
Add to saved papers

DEep LearnIng-based QuaNtification of epicardial adipose tissue predicts MACE in patients undergoing stress CMR.

Atherosclerosis 2024 April 19
BACKGROUND AND AIMS: This study investigated the additional prognostic value of epicardial adipose tissue (EAT) volume for major adverse cardiovascular events (MACE) in patients undergoing stress cardiac magnetic resonance (CMR) imaging.

METHODS: 730 consecutive patients [mean age: 63 ± 10 years; 616 men] who underwent stress CMR for known or suspected coronary artery disease were randomly divided into derivation (n = 365) and validation (n = 365) cohorts. MACE was defined as non-fatal myocardial infarction and cardiac deaths. A deep learning algorithm was developed and trained to quantify EAT volume from CMR. EAT volume was adjusted for height (EAT volume index). A composite CMR-based risk score by Cox analysis of the risk of MACE was created.

RESULTS: In the derivation cohort, 32 patients (8.7 %) developed MACE during a follow-up of 2103 days. Left ventricular ejection fraction (LVEF) < 35 % (HR 4.407 [95 % CI 1.903-10.202]; p<0.001), stress perfusion defect (HR 3.550 [95 % CI 1.765-7.138]; p<0.001), late gadolinium enhancement (LGE) (HR 4.428 [95%CI 1.822-10.759]; p = 0.001) and EAT volume index (HR 1.082 [95 % CI 1.045-1.120]; p<0.001) were independent predictors of MACE. In a multivariate Cox regression analysis, adding EAT volume index to a composite risk score including LVEF, stress perfusion defect and LGE provided additional value in MACE prediction, with a net reclassification improvement of 0.683 (95%CI, 0.336-1.03; p<0.001). The combined evaluation of risk score and EAT volume index showed a higher Harrel C statistic as compared to risk score (0.85 vs. 0.76; p<0.001) and EAT volume index alone (0.85 vs.0.74; p<0.001). These findings were confirmed in the validation cohort.

CONCLUSIONS: In patients with clinically indicated stress CMR, fully automated EAT volume measured by deep learning can provide additional prognostic information on top of standard clinical and imaging parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app