Add like
Add dislike
Add to saved papers

Structure-based virtual screening of mangiferin derivatives with antidiabetic action: a molecular docking and dynamics study and MPO-based drug-likeness approach.

3 Biotech 2024 May
UNLABELLED: Extracts from Mangifera indica leaves and its main component, mangiferin, have proven antidiabetic activity. In this study, mangiferin and its natural derivatives Homomangiferin (HMF), Isomangiferin (IMF), Neomangiferin (NMF), Glucomangiferin (GMF), Mangiferin 6'-gallate (MFG), and Norathyriol (NRT) were compared regarding their action on Diabetes mellitus (DM), employing docking and molecular dynamics (MD) simulations to analyze interactions with the aldose reductase enzyme, the precursor to the conversion of glucose into sorbitol. Notably, HMF showed significant affinity to residues in the active site of the enzyme, including Trp 79, His 110, Trp 111, Phe 122, and Phe 300, with an energy of - 7.2 kcal/mol, observed in the molecular docking simulations. MD reinforced the formation of stable complexes for HMF and MFG with the aldose reductase, with interaction potential energies (IPE) in the order of - 300.812 ± 52 kJ/mol and - 304.812 ± 52 kJ/mol, respectively. The drug-likeness assessment, by multiparameter optimization (MPO), highlighted that HMF and IMF have similarities with polyphenols and glycosidic flavonoids recently patented as antidiabetics, revealing that high polarity (TPSA > 180 Å2 ) is a favorable property for subcutaneous administration, especially because of the gradual passive cell permeability values in biological tissues, with P app values estimated at < 10 × 10-6 cm/s. These compounds are metabolically stable against metabolic enzymes, resulting in a low toxic incidence by metabolic activation, corroborating with a lethal dose (LD50 ) greater than 2000 mg/kg. In this way, HMF showed a systematic alignment between predicted pharmacokinetics and pharmacodynamics, characterizing it as the most favorable substance for inhibiting aldose reductase.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03978-9.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app