Add like
Add dislike
Add to saved papers

Dual solutions of magnetized radiative flow of Casson Nanofluid over a stretching/shrinking cylinder: Stability analysis.

Heliyon 2024 April 31
The enhanced thermal efficiency exhibited by Casson nanofluids offers significant practical applications across various industrial and engineering sectors. This study focuses on the mathematical investigation of the steady magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid through a stretched/shrinking cylinder, taking into account the effects of suction and thermal radiation. The governing partial differential equations (PDEs) have been subjected to a similarity transformation, resulting in a set of nonlinear ordinary differential equations (ODEs). These ODEs were solved numerically utilizing the code of bvp4c in the software of Matlab which offers high accuracy (4th order). The employed nanofluid model incorporates the effects of Brownian motion and thermophoresis. The present study illustrates the graphical depictions of the impacts of different governing parameters, namely Hartmann (M) number, curvature (γ) parameter, Brownian motion (Nb) parameter, mass suction (S) parameter, thermal radiation (Rd) parameter, and thermophoresis (Nt) parameter, on heat transfer, flow, and mass transfer characteristics. Comprehensive determination and visual presentation of the coefficient of skin friction, local Nusselt number, and local Sherwood number were conducted for a range of estimates of applied parameters. Based on our examination, it has been determined that dual similarity solutions are present within a specific range of mass suction parameters. The relationship between the Casson parameter and various fluid dynamic properties, such as skin friction coefficient, heat transfer rate, and mass transfer rates, has been found to exhibit a decreasing trend. Furthermore, the stability analysis discovered that the first solution exhibits linear stability, whereas the second solution displays linear instability. Additionally, the motivation behind this study is to enhance industrial performance through the optimization of thermal power generation systems, thereby increasing their overall efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app