Add like
Add dislike
Add to saved papers

Influence of ceramic crown design (translucent monolithic zirconia vs. bilayered) of implant-supported single crowns after mechanical cycling.

OBJECTIVES: This study aimed to assess the influence of translucent monolithic versus bilayered crowns and whether the use of a CoCr base abutments affects the fatigue and fracture resistance of screwed implant-supported single crowns with external connections under mechanical cycling.

MATERIALS AND METHODS: Fifty specimens were divided into groups: (1) metal-ceramic (MC) crown, (2) veneered zirconia crown (Zr), (3) veneered zirconia crown with a CoCr base abutment (ZrB), (4) monolithic translucent zirconia crown (MZr), and (5) monolithic translucent zirconia crown with a CoCr base abutment (MZrB). Specimens underwent mechanical cycling (5 × 106 cycles; 150 N) evaluating fatigue resistance (number of failures) and those that failed were subsequently subjected to fractographic analyses (stereomicroscope and scanning electron microscope) to evaluate failure location and area, and maximum fracture load was also measured.

RESULTS: The failure-related survival rate (100%) and maximum fracture resistance of the MZrB were significantly higher than those of MC and Zr (50%; p < 0.05). There were no significant differences in the failure rate and fracture resistance when a CoCr base abutment was used or not in the translucent monolithic Zr groups (p > 0.05;MZrB vs. MZr). Failure location, with MC crowns' fractures, noted at the screw area (p = 0.043), while all-ceramic crowns were mostly in the cuspid and to failure area, the Zr group had the largest mean (15.55 ± 9.17 mm2 ) among the groups, significant difference only when compared with MC (1.62 ± 0.81 mm2 ) (p = 0.025).

CONCLUSIONS: Translucent monolithic zirconia crowns exhibited significantly higher fatigue and fracture resistance compared with conventional MC and bilayered crowns.

CLINICAL SIGNIFICANCE: The appropriate choice of material and manufacturing technique is crucial for predicting the higher clinical performance of single crowns. Enhanced mechanical resistance in terms of fatigue and fracture resistance can be achieved by replacing MC and bilayered restorations with computer-aided design and computer-aided manufacturing monolithic zirconia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app