Add like
Add dislike
Add to saved papers

Alginate/carboxymethyl chitosan core-shell microspheres co-loaded with docetaxel/doxorubicin reverse chemotherapy resistance in anaplastic thyroid carcinoma.

BACKGROUND: Drug resistance is a major obstacle in the treatment of anaplastic thyroid carcinoma (ATC) with the combination of docetaxel (DTX) and doxorubicin (DOX). Excessive intracellular drug efflux is considered a key factor contributing to drug resistance. Therefore, developing drug-loaded microspheres to enhance cellular uptake and inhibit efflux of docetaxel and doxorubicin may be an effective strategy to overcome chemoresistance.

METHODS: Alginate-Doxorubicin@carboxymethyl chitosan-Docetaxel (A-DOX@C-DTX) microspheres were prepared using an electrostatic spraying-assisted microfluidic device. The microspheres were characterized, and the in vitro drug release profiles and extracellular efflux rates were determined. The effects of A-DOX@C-DTX microspheres on drug-resistant ATC cells were evaluated in vitro. In vivo, a subcutaneous tumor model was established in mice to investigate the effects of A-DOX@C-DTX microspheres on tumor growth, as well as the accumulation and release of the materials at the tumor site.

RESULTS: We successfully prepared ALG/CMC microspheres with a core-shell structure. These microspheres exhibited controllable size, good monodispersity, excellent biocompatibility, high encapsulation efficiency for doxorubicin and docetaxel, and high drug loading capacity. Moreover, the microspheres promoted cellular uptake of doxorubicin and docetaxel while inhibiting their efflux. A-DOX@C-DTX microspheres showed significant inhibition of viability, proliferation, migration, and invasion of drug-resistant ATC cells in vitro. In vivo, A-DOX@C-DTX microspheres suppressed tumor growth, induced tumor tissue necrosis, and promoted tumor cell apoptosis. Additionally, the microspheres facilitated the enrichment of active substances in the tumor and their sustained release.

CONCLUSION: A-DOX@C-DTX microspheres exhibited superior anti-tumor effects compared to free drug treatment both in vitro and in vivo, particularly against drug-resistant ATC cells. This improved therapeutic efficacy may be attributed to the enhanced drug uptake and reduced drug efflux in drug-resistant ATC cells facilitated by ALG/CMC microspheres.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app