Add like
Add dislike
Add to saved papers

Brain functional connectivity alterations in patients with anterior cruciate ligament injury.

Brain Research 2024 April 23
Recent advancements in neuroimaging have illustrated that anterior cruciate ligament (ACL) injuries could impact the central nervous system (CNS), causing neuroplastic changes in the brain beyond the traditionally understood biomechanical consequences. While most of previous functional magnetic resonance imaging (fMRI) studies have focused on localized cortical activity changes post-injury, emerging research has suggested disruptions in functional connectivity across the brain. However, these prior investigations, albeit pioneering, have been constrained by two limitations: a reliance on small-sample participant cohorts, often limited to two to three patients, potentially limiting the generalizability of findings, and an adherence to region of interest based analysis, which may overlook broader network interactions. To address these limitations, our study employed resting-state fMRI to assess whole-brain functional connectivity in 15 ACL-injured patients, comparing them to matched controls using two distinct network analysis methods. Using Network-Based Statistics, we identified widespread reductions in connectivity that spanned across multiple brain regions. Further modular connectivity analysis showed significant decreases in inter-modular connectivity between the sensorimotor and cerebellar modules, and intra-modular connectivity within the default-mode network in ACL-injured patients. Our results thus highlight a shift from localized disruptions to network-wide dysfunctions, suggesting that ACL injuries induce widespread CNS changes. This enhanced understanding has the potential to stimulate the development of strategies aiming to restore functional connectivity and improve recovery outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app