Add like
Add dislike
Add to saved papers

Cancer radioresistance is characterized by a differential lipid droplet content along the cell cycle.

Cell Division 2024 April 21
BACKGROUND: Cancer radiation treatments have seen substantial advancements, yet the biomolecular mechanisms underlying cancer cell radioresistance continue to elude full understanding. The effectiveness of radiation on cancer is hindered by various factors, such as oxygen concentrations within tumors, cells' ability to repair DNA damage and metabolic changes. Moreover, the initial and radiation-induced cell cycle profiles can significantly influence radiotherapy responses as radiation sensitivity fluctuates across different cell cycle stages. Given this evidence and our prior studies establishing a correlation between cancer radiation resistance and an increased number of cytoplasmic Lipid Droplets (LDs), we investigated if LD accumulation was modulated along the cell cycle and if this correlated with differential radioresistance in lung and bladder cell lines.

RESULTS: Our findings identified the S phase as the most radioresistant cell cycle phase being characterized by an increase in LDs. Analysis of the expression of perilipin genes (a family of proteins involved in the LD structure and functions) throughout the cell cycle also uncovered a unique gene cell cycle pattern.

CONCLUSIONS: In summary, although these results require further molecular studies about the mechanisms of radioresistance, the findings presented here are the first evidence that LD accumulation could participate in cancer cells' ability to better survive X-Ray radiation when cells are in the S phase. LDs can represent new players in the radioresistance processes associated with cancer metabolism. This could open new therapeutic avenues in which the use of LD-interfering drugs might enhance cancer sensitivity to radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app