Add like
Add dislike
Add to saved papers

Li-Site Defects Induce Formation of Li-Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi 0.5-x M x Mn 1.5 O 4 Cathodes (M = Fe and Mg; x = 0.05-0.2).

Advanced Materials 2024 April 20
An understanding of the structural properties that allow for optimal cathode performance, and their origin, is necessary for devising advanced cathode design strategies and accelerating the commercialisation of next-generation cathodes. High-voltage, Fe- and Mg-substituted LiNi0.5 Mn1.5 O4 cathodes offer a low-cost and cobalt-free, yet energy-dense alternative to commercial cathodes. In this work, we explore the effect of substituents on several important structure properties including Ni/Mn ordering, charge distribution and extrinsic defects. In the cation-disordered samples studied, we observe a correlation between increased Fe/Mg substitution, Li-site defects and Li-rich impurity phase formation - the concentrations of which are greater for Mg-substituted samples. We attribute this to the lower formation energy of MgLi defects when compared to FeLi defects. Li-site defect-induced impurity phases consequently alter the charge distribution of the system, resulting in increased [Mn3+ ] with Fe/Mg substitution. In addition to impurity phases, other charge compensators were also investigated to explain the origin of Mn3+ (extrinsic defects, [Ni3+ ], oxygen vacancies and intrinsic off-stoichiometry), although their effects were found to be negligible. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app