Add like
Add dislike
Add to saved papers

Error-Resilience Phase Transitions in Encoding-Decoding Quantum Circuits.

Understanding how errors deteriorate the information encoded in a many-body quantum system is a fundamental problem with practical implications for quantum technologies. Here, we investigate a class of encoding-decoding random circuits subject to local coherent and incoherent errors. We analytically demonstrate the existence of a phase transition from an error-protecting phase to an error-vulnerable phase occurring when the error strength is increased. This transition is accompanied by Rényi entropy transitions and by onset of multifractal features in the system. Our results provide a new perspective on storing and processing quantum information, while the introduced framework enables an analytic understanding of a dynamical critical phenomenon in a many-body system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app