Add like
Add dislike
Add to saved papers

Enhanced Nonlinear Response by Manipulating the Dirac Point at the (111) LaTiO_{3}/SrTiO_{3} Interface.

Tunable spin-orbit interaction (SOI) is an important feature for future spin-based devices. In the presence of a magnetic field, SOI induces an asymmetry in the energy bands, which can produce nonlinear transport effects (V∼I^{2}). Here, we focus on such effects to study the role of SOI in the (111) LaTiO_{3}/SrTiO_{3} interface. This system is a convenient platform for understanding the role of SOI since it exhibits a single-band Hall response through the entire gate-voltage range studied. We report a pronounced rise in the nonlinear longitudinal resistance at a critical in-plane field H_{cr}. This rise disappears when a small out-of-plane field component is present. We explain these results by considering the location of the Dirac point formed at the crossing of the spin-split energy bands. An in-plane magnetic field pushes this point outside of the Fermi contour, and consequently changes the symmetry of the Fermi contours and intensifies the nonlinear transport. An out-of-plane magnetic field opens a gap at the Dirac point, thereby significantly diminishing the nonlinear effects. We propose that magnetoresistance effects previously reported in interfaces with SOI could be comprehended within our suggested scenario.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app