Add like
Add dislike
Add to saved papers

Imaging the top of the Earth's inner core: a present-day flow model.

Scientific Reports 2024 April 19
Despite considerable progress in seismology, mineral physics, geodynamics, paleomagnetism, and mathematical geophysics, Earth's inner core structure and evolution remain enigmatic. One of the most significant issues is its thermal history and the current thermal state. Several hypotheses involving a thermally-convecting inner core have been proposed: a simple, high-viscosity, translational mode, or a classical, lower-viscosity, plume-style convection. Here, we use state-of-the-art seismic imaging to probe the outermost shell of the inner core for its isotropic compressional speed and compare it with recently developed attenuation maps. The pattern emerging in the resulting tomograms is interpreted with recent data on the viscosity of iron as the inner core surface manifestation of a thermally-driven flow, with a positive correlation among compressional speed and attenuation and temperature. Although the outer-core convection controls the heat flux across the inner core boundary, the internally driven inner-core convection is a plausible model that explains a range of observations for the inner core, including distinct anisotropy in the innermost inner core.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app