Add like
Add dislike
Add to saved papers

In vitro enzymatic, in silico ADME and molecular docking based analysis for the identification of novel bis-indole containing triazine-thiazole hybrids derivatives as promising urease inhibitors.

The current study details a sequence of sequential reactions for synthesizing bis-indole-based triazine bearing thiazole derivatives. Several steps were involved in the synthesis of bis-indole-based triazine bearing thiazole derivative. The synthetic reactions were monitored via thin-layer chromatography (TLC). Synthesized compounds were characterized using various spectroscopic techniques, including 1 H NMR, 13 C NMR, and HR-EIMS. The inhibitory activity against urease enzyme of these synthesized compounds was compared with that of thiourea, a standard drug (IC50  = 9.30 ± 0.20 µM). A range of inhibitory potencies were observed for the synthesized compounds, ranging from moderate to excellent, as follows (IC50  = 5.10 ± 0.40 µM to 29.80 ± 0.20 µM). Analyzing the structure-activity relationship (SAR) provided insight into the results, showing that different substituents had different effects on aromatic rings. Several compounds displayed outstanding inhibitory properties (among those tested were 1 , 2 , 4 , 5 , and 6 with IC50  = 6.30 ± 0.80, 5.10 ± 0.40, 5.90 ± 0.50, 8.20 ± 0.10, 8.90 ± 0.60 µM, respectively). Anti-urease evaluation of all the synthesized derivatives was conducted in which the selected compounds have shown remarkable potency compared with the standard drug thiourea (IC50  = 9.30 ± 0.20 µM). Molecular docking analysis was carried out for investigating the better binding sites and distance of the derivatives. Moreover, the drug-like properties were explored by the ADME attributes of the synthesized analogs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app