Add like
Add dislike
Add to saved papers

GSB: GNGS and SAG-BiGRU network for malware dynamic detection.

With the rapid development of the Internet, the continuous increase of malware and its variants have brought greatly challenges for cyber security. Due to the imbalance of the data distribution, the research on malware detection focuses on the accuracy of the whole data sample, while ignoring the detection rate of the minority categories' malware. In the dataset sample, the normal data samples account for the majority, while the attacks' malware accounts for the minority. However, the minority categories' attacks will bring great losses to countries, enterprises, or individuals. For solving the problem, this study proposed the GNGS algorithm to construct a new balance dataset for the model algorithm to pay more attention to the feature learning of the minority attacks' malware to improve the detection rate of attacks' malware. The traditional malware detection method is highly dependent on professional knowledge and static analysis, so we used the Self-Attention with Gate mechanism (SAG) based on the Transformer to carry out feature extraction between the local and global features and filter irrelevant noise information, then extracted the long-distance dependency temporal sequence features by the BiGRU network, and obtained the classification results through the SoftMax classifier. In the study, we used the Alibaba Cloud dataset for malware multi-classification. Compared the GSB deep learning network model with other current studies, the experimental results showed that the Gaussian noise generation strategy (GNGS) could solve the unbalanced distribution of minority categories' malware and the SAG-BiGRU algorithm obtained the accuracy rate of 88.7% on the eight-classification, which has better performance than other existing algorithms, and the GSB model also has a good effect on the NSL-KDD dataset, which showed the GSB model is effective for other network intrusion detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app