Add like
Add dislike
Add to saved papers

Development and performance of NLISA for C-reactive protein detection based on Prussian blue nanoparticle conjugates.

Prussian blue nanoparticles (PBNPs), also called nanozymes, are very attractive as an alternative to horseradish peroxidase in immunoassay development due to their simple and low-cost synthesis, stability and high catalytic activity. Today, there is a method for highly effective PBNP synthesis based on the reduction of an FeCl3 /K3 [Fe(CN)6 ] mixture by hydrogen peroxide. However, there is a lack of research showcasing the use of these highly effective PBNPs for specific target detection in clinical settings, as well as a lack of comprehensive comparisons with conventional methods. To address this gap, we prepared diagnostic reagents based on highly effective PBNPs by modifying them using gelatin and attaching anti-C-reactive protein (CRP) monoclonal antibodies through cross-linking with glutaraldehyde. As a result, a solid-phase colorimetric immunoassay in a sandwich format (nanozyme-linked immunosorbent assay [NLISA]) using highly effective PBNPs as a label for CRP detection has been demonstrated for the first time. The assay demonstrated a detection limit of 21.8 pg/mL, along with acceptable selectivity, precision (CV < 25%) and accuracy (the recovery index was within acceptable limits (75-125%) for LLOQ /ULOQ range. The analytical performance of this method is on par with sensitive assays developed in the last 5 years. Notably, the results obtained from NLISA align with those from an immunofluorescence assay conducted by a certified clinical laboratory. Furthermore, this study underscores the technological challenges involved in constructing an analysis that necessitate further exploration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app