Add like
Add dislike
Add to saved papers

YKL-40 Knockdown Decreases Oxidative Stress Damage in Ovarian Granulosa Cells.

Background: Oxidative stress has been implicated in the pathogenesis of polycystic ovarian syndrome (PCOS). To develop novel antioxidant drugs, it is necessary to explore the key regulatory molecules involved in oxidative stress in PCOS. Plasma YKL-40 levels are elevated in patients with PCOS; however, its role remains unclear. Methods: The follicular fluids of 20 women with PCOS and 12 control subjects with normal ovarian function were collected, and YKL-40 in follicular fluids was measured by enzyme-linked immunosorbent assay. A letrozole-induced PCOS rat model was established and the expression level of YKL-40 in the ovaries was detected by immunohistochemistry. KGN cells were treated with H2 O2 to generate an ovarian granulosa cell (OGC) model of oxidative stress. The siRNA was transfected into the cells for knockdown. The effect of YKL-40 knockdown on H2 O2 -treated KGN cells was evaluated by measuring proliferation, apoptosis, activities of T-SOD, GSH-Px, and CAT, levels of MDA, IL-1β, IL-6, IL-8, and TNF-α, and the PI3K/AKT/NF-κB signaling pathway. Results: YKL-40 levels were elevated in the follicular fluids of women with PCOS compared with control subjects with normal ovarian function. The expression level of YKL-40 in the ovaries of rats with PCOS is obviously higher than that in the ovaries of the control group rats. H2 O2 treatment enhanced YKL-40 mRNA expression and protein secretion. YKL-40 knockdown enhanced cell proliferation and antioxidant capacity while decreasing apoptosis and inflammatory factor levels in KGN cells following H2 O2 treatment. The knockdown activated the PI3K/AKT signaling pathway and suppressed NF-κB nuclear translocation from the cytoplasm. Conclusion: YKL-40 levels were elevated in the follicular fluids of women with PCOS and the ovaries of rats with PCOS. YKL-40 expression can be induced by oxidative stress, and YKL-40 knockdown can decrease oxidative stress damage in OGCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app