Add like
Add dislike
Add to saved papers

A supervised learning-assisted multi-scale study for thermal and mechanical behavior of porous Silica.

Heliyon 2024 April 16
This paper presents a comprehensive investigation of mesoporous Silica utilizing a multi-scale modeling approach under periodic boundary conditions integrated with machine learning algorithms. The study begins with Molecular Dynamics (MD) simulations to extract Silica's elastic properties and thermal conductivity at the nano-scale, employing the Tersoff potential. Subsequently, the derived material characteristics are applied to a series of generated porous Representative Volume Elements (RVEs) at the microscale. This phase involves the exploration of porosity and void shape effects on Silica's thermal and mechanical properties, considering inhomogeneities' distributions along the X-axis and random dispersion of pore cells within a three-dimensional space. Furthermore, the influence of pore shape is examined by defining open and closed-cell models, encompassing spherical and ellipsoidal voids with aspect ratios of 2 and 4. To predict the properties of porous Silica, a shallow Artificial Neural Network (ANN) is deployed, utilizing geometric parameters of the RVEs and porosity. Subsequently, it is revealed that Silica's thermal and mechanical behavior is linked to pore geometry, distribution, and porosity model. Finally, to classify the behavior of porous Silica into three categories, quasi-isotropic, orthotropic, and transversely-isotropic, three methodologies of decision tree approach, K-Nearest Neighbors (KNN) algorithm, and Support Vector Machines (SVMs) are employed. Among these, SVMs employing a quadratic kernel function demonstrate robust performance in categorizing the thermal and mechanical behavior of porous Silica.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app