Add like
Add dislike
Add to saved papers

Physics-informed NN-based adaptive backstepping terminal sliding mode control of buck converter for PEM electrolyzer.

Heliyon 2024 April 16
This paper proposes an advanced control approach to controlling a DC-DC buck converter for a proton exchange membrane (PEM) electrolyzer within the framework of a direct current (DC) microgrid. The proposed adaptive backstepping terminal sliding mode control (ABTSMC) leverages a physics-informed neural network (PINN) to accurately estimate and compensate for system uncertainty. The composite controller achieves finite-time convergence of the tracking error by combining backstepping control and terminal sliding mode control (TSMC). The proposed PINN aims to optimize the unconstrained parameters by utilizing observed training points from the solution, ensuring the network accurately interpolates a limited portion of the solution. The efficacy of the proposed hybrid control method is validated using a hardware-in-the-loop (HIL) implementation under various test settings, ensuring the preservation of the actual performance of the PEM electrolyzer during testing. The experimental verification results demonstrate that the proposed control method exhibits greater benefits, such as a faster dynamic response and greater robustness against parameter uncertainties than improved sliding mode-based controllers. In situations where operational conditions change, a rapid response is achieved within a mere 0.025s of settling time, exhibiting a minimal percentage overshoot of about 17.5% and presenting minimal fluctuations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app