Add like
Add dislike
Add to saved papers

Supramolecular architecture of sodium heterocyclic dithiocarbamate salt: Insights from spectral analysis and bond valence sum characterization.

Heliyon 2024 April 16
The hydrated sodium salt of 1,2,3,4-tetrahydroquinolinedithiocarbamate ( 1) has been successfully synthesized and characterized using IR, NMR, and X-ray single crystal analysis. The υC-S and thioureide υC-N bands appeared at 1484 cm-1 and 968 cm-1 , respectively, in Na(H2O)3 + (thqdtc)- • H2 O. The notable NCS2 carbon signal emerged at 212 ppm, credited to unique nitrogen and sulfur-induced deshielding effects. Compound 1 crystallizes in the monoclinic system, P21/c space group, with dimensions a = 14.4297(4) Å, b = 6.1534(2) Å, c = 17.6701(4) Å, β = 108.7340(10)°, V = 1485.83(7) Å3, and Z = 4. The structure of 1 exhibits a supramolecular architecture through secondary interactions, such as weak intermolecular interactions that link the molecules into a linear polymeric chain. The incorporation of heterocyclic rings in the dithiocarbamate ligands leads to the formation of an intriguing supramolecular architecture, as confirmed by BVS analysis results. The BVS value of sodium does not agree well with the formal oxidation state due to the interactions of anions, cations, coordinated and uncoordinated water molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app