Add like
Add dislike
Add to saved papers

Synergistic effects of β-NaFeO 2 ferrite nanoparticles for photocatalytic degradation, antibacterial, and antioxidant applications.

RSC Advances 2024 April 17
Here, synthesis and thorough characterization of β-NaFeO2 nanoparticles utilizing a co-precipitation technique is presented. XRD analysis confirmed a hexagonal-phase structure of β-NaFeO2 . SEM revealed well-dispersed spherical nanoparticles with an average diameter of 45 nm. The FTIR spectrum analysis revealed weak adsorption bands at 1054 cm-1 suggested metal-metal bond stretching (Fe-Na). UV-Visible spectroscopy indicates a 4.4 eV optical band gap. Colloidal stability of β-NaFeO2 was evidenced via Zeta potential (-28.5 mV) and Dynamic Light Scattering (DLS) measurements. BET analysis reveals a substantial 343.27 m2 g-1 surface area with mesoporous characteristics. Antioxidant analysis indicates efficacy comparable to standard antioxidants, while concentration-dependent antibacterial effects suggest enhanced efficacy against Gram-positive bacteria, particularly Streptococcus. The Photocatalytic activity of β-NaFeO2 showed significant pollutant degradation (>90% efficiency), with increased degradation rates at higher nanoparticle concentrations, indicating potential for environmental remediation applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app