Add like
Add dislike
Add to saved papers

Simple distance-based thread analytical device integrated with ion imprinted polymer for Zn 2+ quantification in human urine samples.

Analyst 2024 April 19
This article presents the development of a distance-based thread analytical device (dTAD) integrated with an ion-imprinted polymer (IIP) for quantitative monitoring of zinc ions (Zn2+ ) in human urine samples. The IIP was easily chemically modified onto the thread channel using dithizone (DTZ) as a ligand to bind to Zn2+ with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as well as 2,2-azobisisobutyronitrile (AIBN) as cross-linking agents to enhance the selectivity for Zn2+ detection. The imprinted polymer was characterized using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). Under optimization, the linear detection range was from 1.0 to 20.0 mg L-1 ( R 2 = 0.9992) with a limit of detection (LOD) of 1.0 mg L-1 . Other potentially interfering metal ions and molecules did not interfere with this approach, leading to high selectivity. Furthermore, our technique exhibits a remarkable recovery ranging from 100.48% to 103.16%, with the highest relative standard deviation (% RSD) of 5.44% for monitoring Zn2+ in human control urine samples, indicating high accuracy and precision. Similarly, there is no significant statistical difference between the results obtained using our method and standards on zinc supplement sample labels. The proposed method offers several advantages in detecting trace Zn2+ for point-of-care (POC) medical diagnostics and environmental sample analysis, such as ease of use, instrument-free readout, and cost efficiency. Overall, our developed dTAD-based IIP method holds potential for simple, affordable, and rapid detection of Zn2+ levels and can be applied to other metal ions' analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app