Add like
Add dislike
Add to saved papers

Unified perspective on exponential tilt and bridge algorithms for rare trajectories of discrete Markov processes.

This article analyzes and compares two general techniques of rare event simulation for generating paths of Markov processes over fixed time horizons: exponential tilting and stochastic bridge. These two methods allow us to accurately compute the probability that a Markov process ends within a rare region which is unlikely to be attained. Exponential tilting is a general technique for obtaining an alternative or tilted sampling probability measure, under which the Markov process becomes likely to hit the rare region at terminal time. The stochastic bridge technique involves conditioning paths towards two endpoints: the terminal point and the initial one. The terminal point is generated from some appropriately chosen probability distribution that covers well the rare region. We show that both methods belong to the class of importance sampling procedures by providing a common mathematical framework of these two conceptually different methods of sampling rare trajectories. We also conduct a numerical comparison of these two methods, revealing distinct areas of application for each Monte Carlo method, where they exhibit superior efficiency. Detailed simulation algorithms are provided.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app