Add like
Add dislike
Add to saved papers

Structural transition, orientational order, and anomalous specific heat in a two-dimensional dimer crystal of core-softened particles.

Systems featuring hard-core-soft-shell repulsive pair potentials can form ordered phases, where particles organize themselves in aggregates with nontrivial geometries. The dimer crystal formed by one such potential, namely, the hard-core plus generalized exponential model of order 4, has been recently investigated, revealing a low-temperature structural phase transition, with the onset of nematic ordering of the dimers. In the present work, we aim to characterize this phase transition via a mean-field theory, by which a detailed analysis of the low-temperature properties of the system is carried out under quadrupole approximation. We determine the transition temperature and identify its order parameter, highlighting the link between the structural transition and the nematic ordering of the system. The first-order character of the transition is established and supported by the Landau expansion of the free energy in powers of the order parameter. The theory is subsequently generalized to take into account lattice vibrations and dimer length fluctuations. Finally, we provide an explanation for the anomalous behavior displayed by the specific heat in the vanishing-temperature limit, which is also supported by Monte Carlo simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app