Add like
Add dislike
Add to saved papers

Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss.

Nature Communications 2024 April 18
Improving the absorption of electromagnetic waves at low-frequency bands (2-8 GHz) is crucial for the increasing electromagnetic (EM) pollution brought about by the innovation of the fifth generation (5G) communication technology. However, the poor impedance matching and intrinsic attenuation of material in low-frequency bands hinders the development of low-frequency electromagnetic wave absorbing (EMWA) materials. Here we propose an interface-induced dual-pinning mechanism and establish a magnetoelectric bias interface by constructing bilayer core-shell structures of NiFe2 O4 (NFO)@BiFeO3 (BFO)@polypyrrole (PPy). Such heterogeneous interface could induce distinct magnetic pinning of the magnetic moment in the ferromagnetic NFO and dielectric pinning of the dipole rotation in PPy. The establishment of the dual-pinning effect resulted in optimized impedance and enhanced attenuation at low-frequency bands, leading to better EMWA performance. The minimum reflection loss (RLmin ) at thickness of 4.43 mm reaches -65.30 dB (the optimal absorption efficiency of 99.99997%), and the effective absorption bandwidth (EAB) can almost cover C-band (4.72 ~ 7.04 GHz) with low filling of 15.0 wt.%. This work proposes a mechanism to optimize low-frequency impedance matching with electromagnetic wave (EMW) loss and pave an avenue for the research of high-performance low-frequency absorbers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app