Add like
Add dislike
Add to saved papers

Pax6 isoforms shape eye development: Insights from developmental stages and organoid models.

Pax6 is a critical transcription factor involved in the development of the central nervous system. However, in humans, mutations in Pax6 predominantly result in iris deficiency rather than neurological phenotypes. This may be attributed to the distinct functions of Pax6 isoforms, Pax6a and Pax6b. In this study, we investigated the spatial and temporal expression patterns of Pax6 isoforms during different stages of mouse eye development. We observed a strong correlation between Pax6a expression and the neuroretina gene Sox2, while Pax6b showed a high correlation with iris-component genes, including the mesenchymal gene Foxc1. During early patterning from E10.5, Pax6b was expressed in the hinge of the optic cup and neighboring mesenchymal cells, whereas Pax6a was absent in these regions. At E14.5, both Pax6a and Pax6b were expressed in the future iris and ciliary body, coinciding with the integration of mesenchymal cells and Mitf-positive cells in the outer region. From E18.5, Pax6 isoforms exhibited distinct expression patterns as lineage genes became more restricted. To further validate these findings, we utilized ESC-derived eye organoids, which recapitulated the temporal and spatial expression patterns of lineage genes and Pax6 isoforms. Additionally, we found that the spatial expression patterns of Foxc1 and Mitf were impaired in Pax6b-mutant ESC-derived eye organoids. This in vitro eye organoids model suggested the involvement of Pax6b-positive local mesodermal cells in iris development. These results provide valuable insights into the regulatory roles of Pax6 isoforms during iris and neuroretina development and highlight the potential of ESC-derived eye organoids as a tool for studying normal and pathological eye development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app