Read by QxMD icon Read

Differentiation; Research in Biological Diversity

Rafal P Piprek, Milena Damulewicz, Malgorzata Kloc, Jacek Z Kubiak
Development of the gonads is a complex process, which starts with a period of undifferentiated, bipotential gonads. During this period the expression of sex-determining genes is initiated. Sex determination is a process triggering differentiation of the gonads into the testis or ovary. Sex determination period is followed by sexual differentiation, i.e. appearance of the first testis- and ovary-specific features. In Xenopus laevis W-linked DM-domain gene (DM-W) had been described as a master determinant of the gonadal female sex...
March 2, 2018: Differentiation; Research in Biological Diversity
Stefano Misino, Diego Bonetti, Sarah Luke-Glaser, Brian Luke
Cancer cells activate telomere maintenance mechanisms (TMMs) to bypass replicative senescence and achieve immortality by either upregulating telomerase or promoting homology-directed repair (HDR) at chromosome ends to maintain telomere length, the latter being referred to as ALT (Alternative Lengthening of Telomeres). In yeast telomerase mutants, the HDR-based repair of telomeres leads to the generation of 'survivors' that escape senescence and divide indefinitely. So far, yeast has proven to provide an accurate model to study the generation and maintenance of telomeres via HDR...
February 16, 2018: Differentiation; Research in Biological Diversity
Alex C Y Chang, Helen M Blau
Cardiovascular diseases are the leading cause of death worldwide and the incidence increases with age. Genetic testing has taught us much about the pathogenic pathways that drive heritable cardiomyopathies. Here we discuss an unexpected link between shortened telomeres, a molecular marker of aging, and genetic cardiomyopathy. Positioned at the ends of chromosomes, telomeres are DNA repeats which serve as protective caps that shorten with each cell division in proliferative tissues. Cardiomyocytes are an anomaly, as they are largely non-proliferative post-birth and retain relatively stable telomere lengths throughout life in healthy individuals...
February 9, 2018: Differentiation; Research in Biological Diversity
Esther Aix, Alex Gallinat, Ignacio Flores
Although recent advances have overturned the old view of the human heart as an inert postmitotic organ, it is clear that the adult heart´s capacity to regenerate after an ischemic episode is very limited. Unlike humans, zebrafish and other lower vertebrates vigorously regenerate damaged myocardium after cardiac injury. Understanding how the zebrafish is able to conserve life-long cardiac regeneration capacity while mammals lose it soon after birth is crucial for the development of new treatments for myocardial infarction...
February 3, 2018: Differentiation; Research in Biological Diversity
Julia Su Zhou Li, Eros Lazzerini Denchi
In multicellular organisms, regulation of telomere length in pluripotent stem cells is critical to ensure organism development and survival. Telomeres consist of repetitive DNA that are progressively lost with each cellular division. When telomeres become critically short, they activate a DNA damage response that results in cell cycle arrest. To counteract telomere attrition, pluripotent stem cells are equipped with telomere elongation mechanisms that ensure prolonged proliferation capacity and self-renewal capacity...
February 1, 2018: Differentiation; Research in Biological Diversity
Haitong Hou, Julia Promisel Cooper
The consequences of telomere loss or dysfunction become most prominent when cells enter the nuclear division stage of the cell cycle. At this climactic stage when chromosome segregation occurs, telomere fusions or entanglements can lead to chromosome breakage, wreaking havoc on genome stability. Here we review recent progress in understanding the mechanisms of detangling and breaking telomere associations at mitosis, as well as the unique ways in which telomeres are processed to allow regulated sister telomere separation...
February 1, 2018: Differentiation; Research in Biological Diversity
Elena Fiorini, Andrea Santoni, Simona Colla
Telomere biology disorders, which are characterized by telomerase activity haploinsufficiency and accelerated telomere shortening, most commonly manifest as degenerative diseases. Tissues with high rates of cell turnover, such as those in the hematopoietic system, are particularly vulnerable to defects in telomere maintenance genes that eventually culminate in bone marrow (BM) failure syndromes, in which the BM cannot produce sufficient new blood cells. Here, we review how telomere defects induce degenerative phenotypes across multiple organs, with particular focus on how they impact the hematopoietic stem and progenitor compartment and affect hematopoietic stem cell (HSC) self-renewal and differentiation...
January 4, 2018: Differentiation; Research in Biological Diversity
Cagatay Gunes, Alush Irene Avila, K Lenhard Rudolph
Telomere shortening as a consequence of cell divisions during aging and chronic diseases associates with an increased cancer risk. Experimental data revealed that telomere shortening results in telomere dysfunction, which in turn affects tumorigenesis in two ways. First, telomere dysfunction suppresses tumor progression by the activation of DNA damage checkpoints, which induce cell cycle arrest (senescence) or apoptosis, as well as by inducing metabolic compromise and activation of immune responses directed against senescent cells...
December 21, 2017: Differentiation; Research in Biological Diversity
Zhe Wang, Yukiko Nakayama, Sachiko Tsuda, Kyo Yamasu
During vertebrate brain development, the gastrulation brain homeobox 2 gene (gbx2) is expressed in the forebrain, but its precise roles are still unknown. In this study, we addressed this issue in zebrafish (Danio rerio) first by carefully examining gbx2 expression in the developing forebrain. We showed that gbx2 was expressed in the telencephalon during late somitogenesis, from 18h post-fertilization (hpf) to 24 hpf, and in the thalamic primordium after 26 hpf. In contrast, another gbx gene, gbx1, was expressed in the anterior-most ventral telencephalon after 36 hpf...
December 21, 2017: Differentiation; Research in Biological Diversity
Wanil Kim, Jerry W Shay
The human cellular reverse transcriptase, telomerase, is very tightly regulated in large long-lived species. Telomerase is expressed during early human fetal development, is turned off in most adult tissues, and then becomes reactivated in almost all human cancers. However, the exact mechanism regulating these switches in expression are not known. We recently described a phenomenon where genes are regulated by telomere length dependent loops (telomere position effects over long distances; TPE-OLD). The hTERT gene is ~ 1...
January 2018: Differentiation; Research in Biological Diversity
Heather L Mentrup, Amanda Hartman, Elizabeth L Thames, Wassim A Basheer, Lydia E Matesic
Maintenance of the intestinal mucosa is driven by local signals that coordinate epithelial proliferation, differentiation, and turnover in order to separate antigenic luminal contents from the host's immune system. Breaches in this barrier promote gastrointestinal pathologies ranging from inflammatory bowel disease to cancer. The ubiquitin ligase ITCH is known to regulate immune responses, and loss of function of ITCH has been associated with gastrointestinal inflammatory disorders, particularly in the colon...
December 15, 2017: Differentiation; Research in Biological Diversity
Wareed Ahmed, Joachim Lingner
Telomere integrity is essential for genome stability and it regulates cell proliferation and tissue renewal. Several lines of evidence indicate that telomeres are particularly sensitive to oxidative damage. Moreover, recent studies demonstrate striking inhibitory effects of oxidative damage on telomerase activity. On the other hand, several mechanisms have been uncovered that either counteract oxidative damage at telomeres or remove the modified lesions. Here, we review the current understanding of oxidative damage and protection of telomeric DNA...
December 14, 2017: Differentiation; Research in Biological Diversity
René Fernando Abarca-Buis, Alejandro Martínez-Jiménez, Eduardo Vera-Gómez, María Elena Contreras-Figueroa, David Garciadiego-Cázares, Ralf Paus, Arturo Robles-Tenorio, Edgar Krötzsch
IL-1 and TNF-α are always present during wound repair, but their pleiotropic and synergistic effects are incompletely understood. In this work, we evaluated the role of IL-1 in wound repair, and examined whether TNF-α administration impaired scarless wound repair. First, we characterised wound repair in outbred CD-1 mice according to age and sex in an ear punch wound model. Then, we examined the effects of Interleukin 1 receptor antagonist (IL-1ra) and TNF-α placement inside ear wounds by means of loaded Heparin beads in young and middle-aged male and female mice...
December 12, 2017: Differentiation; Research in Biological Diversity
Matthew Lovatt, Gary Hin-Fai Yam, Gary S Peh, Alan Colman, N Ray Dunn, Jodhbir S Mehta
Corneal tissue is the most transplanted of all body tissues. Currently, cadaveric donor tissues are used for transplantation. However, a global shortage of transplant grade material has prompted development of alternative, cell-based therapies for corneal diseases. Pluripotent stem cells are attractive sources of cells for regenerative medicine, because large numbers of therapeutically useful cells can be generated. However, a detailed understanding of how to differentiate clinically relevant cell types from stem cells is fundamentally required...
November 16, 2017: Differentiation; Research in Biological Diversity
Gerald R Cunha
No abstract text is available yet for this article.
November 2017: Differentiation; Research in Biological Diversity
Dan Nguyen, Ryuichi Yamada, Nodoka Yoshimitsu, Akira Oguri, Takuya Kojima, Naoki Takahashi
The Mab-21 gene family is crucial for animal development. A deficiency in the Mab-21 genes associates with several defects, including skeletal malformation in mice and humans. In this study, we observed that mice lacking Mab21l1 displayed an unclosed fontanelle, suggesting impaired calvarial bone development. Cells isolated from the calvaria of these mice showed a greater osteoblast differentiation potential as evidenced by the abundance of mineralized bone nodules and higher expression levels of osteogenic markers than wild-type cells...
November 2017: Differentiation; Research in Biological Diversity
Satu Kuokkanen, Liyin Zhu, Jeffrey W Pollard
The human endometrium undergoes extensive morphological, biochemical and molecular changes under the influence of female sex steroid hormones. Besides the fact that estrogen stimulates endometrial cell proliferation and progesterone inhibits this proliferation and induces differentiation, there is limited knowledge about precise molecular mechanisms underlying human endometrial biology. The importance of paracrine signaling in endometrial physiology explains why in vitro culture of endometrial cells has been challenging...
November 2017: Differentiation; Research in Biological Diversity
Sri L Kona, Amita Shrestha, Xiaoping Yi, Serenthia Joseph, Humberto Munoz Barona, Eduardo Martinez-Ceballos
Embryonic Stem (ES) cells are pluripotent cells that can be induced to differentiate into cells of all three lineages: mesoderm, endoderm, and ectoderm. In culture, ES cells can be differentiated into mature neurons by treatment with Retinoic Acid (RA) and this effect is mediated mainly through the activation of the RA nuclear receptors (RAR α, β, and γ), and their isoforms. However, little is known about the role played by specific RAR types on ES cell differentiation. Here, we found that treatment of ES cells with AC55649, an RARβ2 agonist, increased endodermal marker gene expression...
November 2017: Differentiation; Research in Biological Diversity
Gerald R Cunha, Takeshi Kurita, Mei Cao, Joel Shen, Stanley J Robboy, Laurence Baskin
Human female fetal reproductive tracts 9.5-22 weeks of gestation were grown for 1 month in ovariectomized athymic adult female mouse hosts that were either untreated or treated continuously with diethylstilbestrol (DES) via subcutaneous pellet. Normal morphogenesis and normal patterns of differentiation marker expression (KRT6, KRT7, KRT8, KRT10, KRT14, KRT19, ESR1, PGR, TP63, RUNX1, ISL1, HOXA11 and α-ACT2) were observed in xenografts grown in untreated hosts and mimicked observations of previously reported (Cunha et al...
October 4, 2017: Differentiation; Research in Biological Diversity
Dylan Isaacson, Joel Shen, Mei Cao, Adriane Sinclair, Xuan Yue, Gerald Cunha, Laurence Baskin
In this paper, we introduce our novel renal subcapsular xenograft model for the study of human penile urethral and clitoral development. We grafted fifteen intact fetal penes and clitorides 8-11 weeks fetal age under the renal capsules of gonadectomized athymic mice. The mice were treated with a subcutaneous pellet of dihydrotestosterone (DHT), diethylstilbestrol (DES) or untreated with hormones. Xenografts were harvested after fourteen days of growth and analyzed via serial histologic sectioning and immunostaining for Ki-67, cytokeratins 6, 7 and 10, uroplakin and the androgen receptor...
September 22, 2017: Differentiation; Research in Biological Diversity
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"