Add like
Add dislike
Add to saved papers

Dispersive nonreciprocity between a qubit and a cavity.

Science Advances 2024 April 20
The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other and, in closed systems, is necessarily bidirectional, i.e., reciprocal. Here, we present an experimental study of a nonreciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot noise dephasing, under varying degrees of nonreciprocity by tuning the magnetic field bias of a ferrite component in situ. We introduce a general master equation model for nonreciprocal interactions in the dispersive regime, providing a compact description of the observed qubit-cavity dynamics agnostic to the intermediary system. Our result provides an example of quantum nonreciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app