Add like
Add dislike
Add to saved papers

Perturbation-induced granular fluidization as a model for remote earthquake triggering.

Science Advances 2024 April 20
Studying the effect of mechanical perturbations on granular systems is crucial for understanding soil stability, avalanches, and earthquakes. We investigate a granular system as a laboratory proxy for fault gouge. When subjected to a slow shear, granular materials typically exhibit a stress overshoot before reaching a steady state. We find that short seismic pulses can reset a granular system flowing in steady state so that the stress overshoot is regenerated. This feature is shown to determine the stability of the granular system under different applied stresses in the wake of a perturbation pulse and the resulting dynamics when it fails. Using an analytical aging-rejuvenation model for describing the overshoot response, we show that our laboratory-derived theoretical framework can quantitatively explain data from two fault slip events triggered by seismic waves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app