Add like
Add dislike
Add to saved papers

Prediction of deleterious non-synonymous SNPs of human MDC1 gene: an in silico approach.

MDC1 (Mediator of DNA damage Checkpoint protein 1) functions to facilitate the localization of numerous DNA damage response (DDR) components to DNA double-strand break sites. MDC1 is an integral component in preserving genomic stability and appropriate DDR regulation. There haven't been systematic investigations of MDC1 mutations that induce cancer and genomic instability. Variations in nsSNPs have the potential to modify the protein chemistry and their function. Describing functional SNPs in disease-associated genes presents a significant conundrum for investigators, it is possible to assess potential functional SNPs before conducting larger population examinations. Multiple sequences and structure-based bioinformatics strategies were implemented in the current in-silico investigation to discern potential nsSNPs of the MDC1 genes. The nsSNPs were identified with SIFT, SNAP2, Align GVGD, PolyPhen-2, and PANTHER, and their stability was determined with MUpro. The conservation, solvent accessibility, and structural effects of the mutations were identified with ConSurf, NetSurfP-2.0, and SAAFEC-SEQ respectively. Cancer-related analysis of the nsSNPs was conducted using cBioPortal and TCGA web servers. The present study appraised five nsSNPs (P1426T, P69S, P194R, P203L, and H131Y) as probably mutilating due to their existence in highly conserved regions and propensity to deplete protein stability. The nsSNPs P194R, P203L, and H131Y were concluded as deleterious and possibly damaging from the 5 prediction tools. The functional nsSNP P194R mutation is associated with skin cutaneous melanoma while no significant records were found for other nsSNPs. The present study concludes that the highly deleterious P194R mutations can potentially induce genomic instability and contribute to various cancers' pathogenesis. Developing drugs targeting these mutations can undoubtedly be advantageous in large population-based studies, particularly in the development of precision medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app