Add like
Add dislike
Add to saved papers

Deciphering metabolic dysfunction-associated steatotic liver disease: insights from predictive modeling and clustering analysis.

BACKGROUND AND AIM: New nomenclature of steatotic liver disease (SLD) including metabolic dysfunction-associated SLD (MASLD), MASLD and increased alcohol intake (MetALD), and alcohol-associated liver disease (ALD) has recently been proposed. We investigated clustering analyses to decipher the complex landscape of SLD pathologies including the former nomenclature of nonalcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD).

METHODS: Japanese individuals who received annual health checkups including abdominal ultrasonography (n = 15 788, men/women: 10 250/5538, mean age: 49 years) were recruited.

RESULTS: The numbers of individuals with SLD, MASLD, MetALD, ALD, NAFLD, and MAFLD were 5603 (35.5%), 4227 (26.8%), 795 (5.0%), 324 (2.1%), 3982 (25.8%), and 4946 (31.3%), respectively. Clustering analyses using t-distributed stochastic neighbor embedding and K-means to visually represent interconnections in SLDs uncovered five cluster formations. MASLD and NAFLD mainly shared three clusters including (i) low alcohol intake with relatively low-grade obesity; (ii) obesity with dyslipidemia; and (iii) dysfunction of glucose metabolism. Both MetALD and ALD displayed one distinct cluster intertwined with alcohol consumption. MAFLD widely shared all of the five clusters. In machine learning-based analyses using algorithms of random forest and extreme gradient boosting and receiver operating characteristic curve analyses, fatty liver index (FLI), calculated by body mass index, waist circumference, and levels of γ-glutamyl transferase and triglycerides, was selected as a useful feature for SLDs.

CONCLUSIONS: The new nomenclature of SLDs is useful for obtaining a better understanding of liver pathologies and for providing valuable insights into predictive factors and the dynamic interplay of diseases. FLI may be a noninvasive predictive marker for detection of SLDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app