Add like
Add dislike
Add to saved papers

Extreme ultraviolet time-resolved photoelectron spectroscopy of adenine, adenosine and adenosine monophosphate in a liquid flat jet.

Time-resolved photoelectron spectroscopy using an extreme-ultraviolet (XUV) probe pulse was used to investigate the UV photoinduced dynamics of adenine (Ade), adenosine (Ado), and adenosine-5-monophosphate (AMP) in a liquid water jet. In contrast to previous studies using UV probe pulses, the XUV pulse at 21.7 eV can photoionize all excited states of a molecule, allowing for full relaxation pathways to be addressed after excitation at 4.66 eV. This work was carried out using a gas-dynamic flat liquid jet, resulting in considerably enhanced signal compared to a cylindrical jet. All three species decay on multiple time scales that are assigned based on their decay associated spectra; the fastest decay of ∼100 fs is assigned to ππ* decay to the ground state, while a smaller component with a lifetime of ∼500 fs is attributed to the nπ* state. An additional slower channel in Ade is assigned to the 7H Ade conformer, as seen previously. This work demonstrates the capability of XUV-TRPES to disentangle non-adiabatic dynamics in an aqueous solution in a state-specific manner and represents the first identification of the nπ* state in the relaxation dynamics of adenine and its derivatives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app