Add like
Add dislike
Add to saved papers

Development of artificial intelligence edge computing based wearable device for fall detection and prevention of elderly people.

Heliyon 2024 April 31
Elderly falls are a major concerning threat resulting in over 1.5-2 million elderly people experiencing severe injuries and 1 million deaths yearly. Falls experienced by Elderly people may lead to a long-term negative impact on their physical and psychological health conditions. Major healthcare research had focused on this lately to detect and prevent the fall. In this work, an Artificial Intelligence (AI) edge computing based wearable device is designed and developed for detection and prevention of fall of elderly people. Further, the various deep learning algorithms such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) are utilized for activity recognition of elderly. Also, the CNN-LSTM, RNN-LSTM and GRU-LSTM with and without attention layer respectively are utilized and the performance metrics are analyzed to find the best deep learning model. Furthermore, the three different hardware boards such as Jetson Nano developer board, Raspberry PI 3 and 4 are utilized as an AI edge computing device and the best deep learning model is implemented and the computation time is evaluated. Results demonstrate that the CNN-LSTM with attention layer exhibits the accuracy, recall, precision and F1_Score of 97%, 98%, 98% and 0.98 respectively which is better when compared to other deep learning models. Also, the computation time of NVIDIA Jetson Nano is less when compared to other edge computing devices. This work appears to be of high societal relevance since the proposed wearable device can be used to monitor the activity of elderly and prevents the elderly falls which improve the quality of life of elderly people.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app