Add like
Add dislike
Add to saved papers

Power line fault diagnosis based on convolutional neural networks.

Heliyon 2024 April 31
With the rapid development of the national economy, power security is very important for the security of the country and people's happiness. Electricity is an important energy source for a country. Even if the power system malfunctions for a short period of time, it would cause incalculable losses to social production and people's lives. Among them, one of the most important reasons for power system faults is the occurrence of power line faults, so diagnosing faulty lines has great research significance. On the basis of analyzing the structure and working principle of the deep learning model convolutional neural network (CNN), this article used the CNN model to diagnose faults in power lines and analyzed the simulation results. It was found that different CNN structures have different fault diagnosis accuracy for power lines. The fewer the number of batches in the network structure and the more the number of training sessions, the higher its fault determination accuracy. In the power line fault diagnosis based on three deep learning algorithms, the CNN has the highest stable fault diagnosis accuracy of 100%; the recursive neural network has the second stable fault diagnosis accuracy of 93.4%; the deep belief network has the lowest stable fault diagnosis accuracy of 91.5%. In the comparison of power line fault diagnosis stability, the accuracy standard deviation of CNN is close to 0, and they are also the most stable in power circuit fault diagnosis. The stability of algorithmic recurrent neural networks is between the two, and the accuracy standard deviation of deep belief networks is 1.84% when trained 12 times. Their fault diagnosis stability is also the worst.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app