Add like
Add dislike
Add to saved papers

Which Strength Manifestation Is More Related to Regional Swimmers' Performance and In-Water Forces? Maximal Neuromuscular Capacities Versus Maximal Mechanical Maintenance Capacity.

PURPOSE: To explore the association of the load-velocity (L-V) relationship variables and ability to maintain maximal mechanical performance during the prone bench-pull exercise with sprint swimming performance and in-water forces.

METHODS: Eleven competitive adult male swimmers (50-m front crawl World Aquatics points: 488 [66], performance level 4) performed 1 experimental session. The L-V relationship variables (L0 [ie,  maximal theoretical load at 0 velocity]; v0 [ie, maximal theoretical velocity at 0 load], and Aline [ie, area under the L-V relationship]) and maximal mechanical maintenance capacity were assessed at the beginning of the session. Afterward, sprint swimming performance and in-water force production were tested through a 50-m front-crawl all-out trial and 15-s fully-tethered swimming, respectively.

RESULTS: Only v0 presented high positive associations with 50-m time and swimming kinematics (r > .532; P < .046). The L0, v0, and Aline showed very high positive associations with the in-water forces during tethered swimming (r > .523; P < .049). However, the ability to maintain maximal mechanical performance, assessed by the mean velocity decline during the prone bench pull, was only significantly correlated with stroke rate (r = -.647; P = .016) and stroke index (r = .614; P = .022).

CONCLUSIONS: These findings indicate that maximal neuromuscular capacities, especially v0, have a stronger correlation with swimming performance and in-water force production than the ability to maintain maximal mechanical performance in level 4 swimmers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app