Add like
Add dislike
Add to saved papers

Phosphate-solubilizing bacteria improve the antioxidant enzyme activity of Potamogeton crispus L. and enhance the remediation effect on Cd-contaminated sediment.

Phosphorus-solubilizing bacteria (PSB) assisted phytoremediation of cadmium (Cd) pollution is an effective method, but the mechanism of PSB-enhanced in-situ remediation of Cd contaminated sediment by submerged plants is still rare. In this study, PSB (Leclercia adecarboxylata L1-5) was inoculated in the rhizosphere of Potamogeton crispus L. (P. crispus) to explore the effect of PSB on phytoremediation. The results showed that the inoculation of PSB effectively improved the Cd extraction by P. crispus under different Cd pollution and the Cd content in the aboveground and underground parts of P. crispus all increased. The μ-XRF images showed that most of the Cd was enriched in the roots of P. crispus. PSB especially showed positive effects on root development and chlorophyll synthesis. The root length of P. crispus increased by 51.7 %, 80.5 % and 74.2 % under different Cd pollution, and the Ca/Cb increased by 38.9 %, 15.2 % and 8.6 %, respectively. Furthermore, PSB enhanced the tolerance of P. crispus to Cd. The contents of soluble protein, MDA and H2 O2 in 5 mg·kg-1 and 7 mg·kg-1 Cd content groups were decreased and the activities of antioxidant enzymes were increased after adding PSB. The results showed that the application of PSB was beneficial to the in-situ remediation of submerged plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app