Add like
Add dislike
Add to saved papers

Experimental validation and clinical feasibility of 3D reconstruction of coronary artery bifurcation stents using intravascular ultrasound.

The structural morphology of coronary stents and the local hemodynamic environment following stent deployment in coronary arteries are crucial determinants of procedural success and subsequent clinical outcomes. High-resolution intracoronary imaging has the potential to facilitate geometrically accurate three-dimensional (3D) reconstruction of coronary stents. This work presents an innovative algorithm for the 3D reconstruction of coronary artery stents, leveraging intravascular ultrasound (IVUS) and angiography. The accuracy and reproducibility of our method were tested in stented patient-specific silicone models, with micro-computed tomography serving as a reference standard. We also evaluated the clinical feasibility and ability to perform computational fluid dynamics (CFD) studies in a clinically stented coronary bifurcation. Our experimental and clinical studies demonstrated that our proposed algorithm could reproduce the complex 3D stent configuration with a high degree of precision and reproducibility. Moreover, the algorithm was proved clinically feasible in cases with stents deployed in a diseased coronary artery bifurcation, enabling CFD studies to assess the hemodynamic environment. In combination with patient-specific CFD studies, our method can be applied to stenting optimization, training in stenting techniques, and advancements in stent research and development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app