Add like
Add dislike
Add to saved papers

STAT3 mediates ECM stiffness-dependent progression in ovarian cancer.

The treatment of ovarian cancer remains a medical challenge and its malignant progression is connected with obvious changes in both tissue and cell stiffness. However, the accurate mechanical-responsive molecules and mechanism remains unclear in ovarian cancer. Based on our previous results combined with the crucial regulatory role of STAT3 in the malignant progression of various cancer types, we want to investigate the relationship between STAT3 and matrix stiffness in ovarian cancer and further explore the potential mechanisms. Collagen-coated polyacrylamide gels (1, 6, and 60 kPa) were prepared to mimic soft or hard matrix stiffness. Western blotting, qRT-PCR, flow cytometry, IHC, EdU assays, and TEM were used to evaluate the effect of STAT3 in vitro under different matrix stiffnesses. Furthermore, a BALB/c nude mouse model was established to assess the relationship in vivo. Our results confirmed the differential expression of STAT3/p-STAT3 not only in normal and malignant ovarian tissues but also under different matrix stiffnesses. Furthermore, we verified that STAT3 was a mechanically responsive gene both in vitro and in vivo, and the mechanical response was carried out by altering the migration-related molecules (TNFAIP1) and adhesion-related molecules (LPXN, CNN3). The novel findings suggest that STAT3, a potential therapeutic target for clinical diagnosis and treatment, is a mechanically responsive gene that responds to matrix stiffness, particularly regulation in migration and adhesion in the progression of ovarian cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app