Add like
Add dislike
Add to saved papers

STM1863, a Member of the DUFs Protein Family, Is Involved in Environmental Adaptation, Biofilm Formation, and Virulence in Salmonella Typhimurium.

Salmonella Typhimurium (STM) is an important zoonotic Gram-negative pathogen that can cause infection in a variety of livestock and poultry. Meanwhile, as an important foodborne pathogen, the bacterium can survive in various stressful environments and transmits through the fecal-oral route, posing a serious threat to global food safety. To investigate the roles of STM1863, a member of the DUFs protein family, involved in STM environmental adaptation, biofilm formation, and virulence. We analyzed the molecular characteristics of the protein encoded by STM1863 gene and examined intra- and extracellular expression levels of STM1863 gene in mouse macrophages. Furthermore, we constructed STM1863 gene deletion and complementation strains and determined its environmental adaptation under stressful conditions such as acid, alkali, high salt, bile salt, and oxidation. And the capacity of biofilm formation and pathogenicity of those strains were analyzed and compared. In addition, the interaction between the promoter of STM1863 gene and RcsB protein was analyzed using DNA gel electrophoresis migration assay (electrophoretic mobility shift assay [EMSA]). The experiments revealed that acid adaptability and biofilm formation ability of STM1863 gene deletion strain were significantly weakened compared with the parental and complementary strains. Moreover, the adhesion and invasion ability of STM1863 deletion strain to mouse macrophages was significantly decreased, while the median lethal dose (LD50 ) increased by 2.148-fold compared with the parental strain. In addition, EMSA confirmed that RcsB protein could bind to the promoter sequence of STM1863 gene, suggesting that the expression of STM1863 gene might be modulated by RcsB. The present study demonstrated for the first time that STM1863, a member of the DUFs protein family, is involved in the modulation of environmental adaptation, biofilm formation, and virulence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app