Add like
Add dislike
Add to saved papers

Role of β3 subunit of the GABA type A receptor in triple negative breast cancer proliferation, migration, and cell cycle progression.

Cell Cycle 2024 April 17
Triple negative breast cancer (TNBC) is known for its heterogeneous nature and aggressive onset. The unresponsiveness to hormone therapies and immunotherapy and the toxicity of chemotherapeutics account for the limited treatment options for TNBC. Ion channels have emerged as possible therapeutic candidates for cancer therapy, but little is known about how ligand gated ion channels, specifically, GABA type A ligand-gated ion channel receptors (GABAA R), affect cancer pathogenesis. Our results show that the GABAA β3 subunit is expressed at higher levels in TNBC cell lines than non-tumorigenic cells, therefore contributing to the idea that limiting the GABAA R via knockdown of the GABAA β3 subunit is a potential strategy for decreasing the proliferation and migration of TNBC cells. We employed pharmacological and genetic approaches to investigate the role of the GABAA β3 subunit in TNBC proliferation, migration, and cell cycle progression. The results suggest that pharmacological antagonism or genetic knockdown of GABAA β3 subunit decreases TNBC proliferation and migration. In addition, GABAA β3 subunit knockdown causes cell cycle arrest in TNBC cell lines via decreased cyclin D1 and increased p21 expression. Our findings suggest that membrane bound GABAA receptors containing the β3 subunit can be further developed as a potential novel target for the treatment of TNBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app