Journal Article
Review
Add like
Add dislike
Add to saved papers

Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research.

Analyst 2024 April 17
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app