Add like
Add dislike
Add to saved papers

Coral geochemical response to uplift in the aftermath of the 2005 Nias-Simeulue earthquake.

Scientific Reports 2024 April 16
On 28 March 2005, the Indonesian islands of Nias and Simeulue experienced a powerful Mw 8.6 earthquake and coseismic uplift and subsidence. In areas of coastal uplift (up to ~ 2.8 m), fringing reef coral communities were killed by exposure, while deeper corals that survived were subjected to habitats with altered runoff, sediment and nutrient regimes. Here we present time-series (2000-2009) of Mn/Ca, Y/Ca and Ba/Ca variability in massive Porites corals from Nias to assess the environmental impact of a wide range of vertical displacement (+ 2.5 m to - 0.4 m). High-resolution LA-ICP-MS measurements show that skeletal Mn/Ca increased at uplifted sites, regardless of reef type, indicating a post-earthquake increase in suspended sediment delivery. Transient and/or long-term increases in skeletal Y/Ca at all uplift sites support the idea of increased sediment delivery. Coral Mn/Ca and Ba/Ca in lagoonal environments highlight the additional influences of reef bathymetry, wind-driven sediment resuspension, and phytoplankton blooms on coral geochemistry. Together, the results show that the Nias reefs adapted to fundamentally altered hydrographic conditions. We show how centuries of repeated subsidence and uplift during great-earthquake cycles along the Sunda megathrust may have shaped the modern-day predominance of massive scleractinian corals on the West Sumatran reefs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app