Add like
Add dislike
Add to saved papers

Tactile shape discrimination for moving stimuli.

Scientific Reports 2024 April 16
In this study, we explored spatial-temporal dependencies and their impact on the tactile perception of moving objects. Building on previous research linking visual perception and human movement, we examined if an imputed motion mechanism operates within the tactile modality. We focused on how biological coherence between space and time, characteristic of human movement, influences tactile perception. An experiment was designed wherein participants were stimulated on their right palm with tactile patterns, either ambiguous (incongruent conditions) or non-ambiguous (congruent conditions) relative to a biological motion law (two-thirds power law) and asked to report perceived shape and associated confidence. Our findings reveal that introducing ambiguous tactile patterns (1) significantly diminishes tactile discrimination performance, implying motor features of shape recognition in vision are also observed in the tactile modality, and (2) undermines participants' response confidence, uncovering the accessibility degree of information determining the tactile percept's conscious representation. Analysis based on the Hierarchical Drift Diffusion Model unveiled the sensitivity of the evidence accumulation process to the stimulus's informational ambiguity and provides insight into tactile perception as predictive dynamics for reducing uncertainty. These discoveries deepen our understanding of tactile perception mechanisms and underscore the criticality of predictions in sensory information processing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app